Biomass power generation - What are the environmental benefits of biomass fuels?


The environmental benefits of biomass fuels are mainly reflected in the following aspects:

1. Biomass fuel replaces conventional energy such as coal, which can reduce the emission of air pollutants and effectively improve the air quality in urban and rural areas.
The sulfur content of biomass fuel is less than 1/10 of that of coal. The combustion of biomass fuel instead of coal can effectively reduce the emission of sulfur dioxide in the atmosphere.
Since the CO2 emitted by biomass in the combustion process is as much as that absorbed by photosynthesis in the growth process, the net CO2 emission from biomass combustion to air is zero from the perspective of recycling.

2. The solid waste after combustion can be comprehensively utilized

Ash can be recycled to make potash fertilizer, realizing the effective cycle of "straw - fuel - fertilizer".

3. Reasonable disposal of abandoned crops to reduce the impact on the environment

Only straw, China's annual crop straw production weight is about 706 million tons.
Waste crops, such as stalks, decompose naturally, producing large amounts of methane, which is thought to be 21 times more potent than carbon dioxide.
Turning waste crops into fuel can not only turn waste into treasure, save resources, but also reduce greenhouse gases and protect the environment.

The state encourages the development of such environmental protection enterprises, because it is very good to realize the transformation of waste into treasure, local materials, local production, and with energy saving, environmental protection and other functions.

At present, there are still some problems in the production process of biomass fuel which restrict the development of sustainable economy in China.
It is of great significance to alleviate China's energy shortage and environmental pollution, so there is still a lot of room for the development of this industry.

LAST NEWS


The generator set control module adopts the microprocessor-based

The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier. The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.


which is convenient for transportation and installation

Biomass gasifier is composed of furnace body system, dust removal system, cooling system, tar purification system, tar separation system, Roots blower, electrical control system, etc. The syngas generator set is mainly composed of a gas engine, a three-phase AC synchronous engine, a control cabinet, a common chassis and a gas source link part. The KX series biomass synthesis gas power generation system adopts modular design, which is convenient for transportation and installation. The KX series biomass gasifier is a downdraft, fluidized bed biomass gasifier independently designed and developed for the needs of biomass synthesis gas power generation. This series of biomass gasifier uses PLC intelligent system control The system fully realizes long-term fully automatic work. And the dry purification technology used in the gasifier avoids secondary water pollution to the natural environment. Moreover, the raw materials are highly adaptable, requiring the size of the biomass raw materials to be ≤30mm and the moisture content ≤20%. Pass various biomass raw materials through the gasifier for drying, cracking, oxidation and reduction to produce biomass synthesis gas, and then the biomass synthesis gas is cooled, dusted, and cooled to remove tar and impurities in the gas, and the processed high-quality , The pure biomass synthesis gas is transported to the synthesis gas generator set for power generation. In this way, while realizing the conversion of low-value biomass energy from solid to gaseous, it greatly improves the utilization efficiency of solid biomass energy. Biomass gasification is the process of converting solid biomass (wood chips, branches, organic household waste, agricultural and forestry waste, etc.) into combustible biomass synthesis gas. By controlling the reaction process, carbon, hydrogen, and oxygen are chemically reacted. It is synthesized into combustible components such as carbon monoxide, hydrogen and methane, and most of the energy in biomass raw materials is transferred to biomass synthesis gas. This is the gasification process of biomass gasifier. The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier.    The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.


Biomass gasification is the process of converting solid biomass

Biomass gasification is the process of converting solid biomass (wood chips, branches, organic household waste, agricultural and forestry waste, etc.) into combustible biomass synthesis gas. By controlling the reaction process, carbon, hydrogen, and oxygen are chemically reacted. It is synthesized into combustible components such as carbon monoxide, hydrogen and methane, and most of the energy in biomass raw materials is transferred to biomass synthesis gas. This is the gasification process of biomass gasifier. The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier.    The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.