National Energy Administration response: whether domestic waste incineration heating belongs to the biomass energy encouraged by the country


National Energy Administration response: whether domestic waste incineration heating belongs to the biomass energy encouraged by the country
The National Energy Administration has responded to a question about whether household waste incineration heating is a kind of biomass energy encouraged by the country.


Question:

Our company is specialized in household waste incineration treatment enterprises.
In the just-released Notice of the National Energy Administration on Improving Renewable Energy Heating in Accordant to Local Conditions, it encourages the "rational development of biomass energy heating". Does domestic waste incineration belong to the category of "biomass energy" and is it within the scope of encouragement?
How to understand "biomass boiler shall not be mixed with coal, garbage, industrial solid waste and other materials?"
Does "biomass power subsidy give priority to biomass cogeneration project" include subsidy for domestic waste incineration project?

Answer:

1. Whether domestic waste incineration belongs to the category of "biomass energy" and whether it is within the scope of encouragement

According to the Renewable Energy Act, "Biomass energy refers to energy derived from natural plants, dung and organic waste in urban and rural areas".
The organic part of domestic garbage belongs to urban and rural organic waste.
The energy converted by incineration of organic parts of domestic garbage belongs to the category of biomass energy and belongs to the scope of biomass energy heating.

Two, on how to understand the "biomass boiler shall not be mixed with coal, garbage, industrial solid waste and other materials"

Combined with the context of the Notice, "biomass boiler" here does not include biomass cogeneration of heat and power, mainly refers to the above mentioned biomass heating boilers that are specifically fueled by agricultural and forestry biomass, biomass forming fuel and biological natural gas.

III. Whether the subsidy for MSW incineration project is included in the "Biomass Power Subsidization Priority to Support Biomass Cogeneration Project"

"Biomass cogeneration projects" in the Circular include agricultural and forestry biomass cogeneration projects and household waste incineration cogeneration projects.

LAST NEWS


The generator set control module adopts the microprocessor-based

The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier. The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.


which is convenient for transportation and installation

Biomass gasifier is composed of furnace body system, dust removal system, cooling system, tar purification system, tar separation system, Roots blower, electrical control system, etc. The syngas generator set is mainly composed of a gas engine, a three-phase AC synchronous engine, a control cabinet, a common chassis and a gas source link part. The KX series biomass synthesis gas power generation system adopts modular design, which is convenient for transportation and installation. The KX series biomass gasifier is a downdraft, fluidized bed biomass gasifier independently designed and developed for the needs of biomass synthesis gas power generation. This series of biomass gasifier uses PLC intelligent system control The system fully realizes long-term fully automatic work. And the dry purification technology used in the gasifier avoids secondary water pollution to the natural environment. Moreover, the raw materials are highly adaptable, requiring the size of the biomass raw materials to be ≤30mm and the moisture content ≤20%. Pass various biomass raw materials through the gasifier for drying, cracking, oxidation and reduction to produce biomass synthesis gas, and then the biomass synthesis gas is cooled, dusted, and cooled to remove tar and impurities in the gas, and the processed high-quality , The pure biomass synthesis gas is transported to the synthesis gas generator set for power generation. In this way, while realizing the conversion of low-value biomass energy from solid to gaseous, it greatly improves the utilization efficiency of solid biomass energy. Biomass gasification is the process of converting solid biomass (wood chips, branches, organic household waste, agricultural and forestry waste, etc.) into combustible biomass synthesis gas. By controlling the reaction process, carbon, hydrogen, and oxygen are chemically reacted. It is synthesized into combustible components such as carbon monoxide, hydrogen and methane, and most of the energy in biomass raw materials is transferred to biomass synthesis gas. This is the gasification process of biomass gasifier. The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier.    The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.


Biomass gasification is the process of converting solid biomass

Biomass gasification is the process of converting solid biomass (wood chips, branches, organic household waste, agricultural and forestry waste, etc.) into combustible biomass synthesis gas. By controlling the reaction process, carbon, hydrogen, and oxygen are chemically reacted. It is synthesized into combustible components such as carbon monoxide, hydrogen and methane, and most of the energy in biomass raw materials is transferred to biomass synthesis gas. This is the gasification process of biomass gasifier. The generation principle of biomass synthesis gas: biomass raw materials enter the reactor of the gasification furnace, after being heated and dried, and then as the temperature rises, its volatile matter is precipitated and pyrolyzed (cracked) at high temperature. The pyrolyzed gas and production The substance undergoes a combustion reaction with the supplied air in the oxidation zone to produce CO2 and water vapor. The heat generated by combustion is used to maintain drying, pyrolysis and endothermic reactions in the lower reduction zone. The gas produced after combustion passes down the reduction zone and reacts with the high-temperature carbon layer (C+CO2=2CO, C+HO2=H2+CO) to generate biomass synthesis gas containing CO, H2, CH4, CmHn, etc. It is drawn from the bottom, and is sent out for use after the purification system removes impurities such as tar. The ash is discharged from the lower part of the gasifier.    The generator set control module adopts the microprocessor-based generator set control technology, which has many functions such as automatic data recording, automatic operation, automatic control, automatic protection, etc., and has good reliability and stable performance. The operating parameters of the unit are displayed by a large-screen LCD, which displays large and accurate data.